skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bansal, Ayoosh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 3, 2026
  2. Free, publicly-accessible full text available January 3, 2026
  3. System auditing is an essential tool for detecting malicious events and conducting forensic analysis. Although used extensively on general-purpose systems, auditing frameworks have not been designed with consideration for the unique constraints and properties of Real-Time Systems (RTS). System auditing could provide tremendous benefits for security-critical RTS. However, a naive deployment of auditing on RTS could violate the temporal requirements of the system while also rendering auditing incomplete and ineffectual. To ensure effective auditing that meets the computational needs of recording complete audit information while adhering to the temporal requirements of the RTS, it is essential to carefully integrate auditing into the real-time (RT) schedule. This work adapts the Linux Audit framework for use in RT Linux by leveraging the common properties of such systems, such as special purpose and predictability.Ellipsis, an efficient system for auditing RTS, is devised that learns the expected benign behaviors of the system and generates succinct descriptions of the expected activity. Evaluations using varied RT applications show thatEllipsisreduces the volume of audit records generated during benign activity by up to 97.55% while recording detailed logs for suspicious activities. Empirical analyses establish that the auditing infrastructure adheres to the properties of predictability and isolation that are important to RTS. Furthermore, the schedulability of RT tasksets under audit is comprehensively analyzed to enable the safe integration of auditing in RT task schedules. 
    more » « less
  4. The paper discussesalgorithmic priority inversionin mission-critical machine inference pipelines used in modern neural-network-based perception subsystems and describes a solution to mitigate its effect. In general,priority inversionoccurs in computing systems when computations that are less important are performed together with or ahead of those that are more important. Significant priority inversion occurs in existing machine inference pipelines when they do not differentiate between critical and less critical data. We describe a framework to resolve this problem and demonstrate that it improves a perception system's ability to react to critical inputs, while at the same time reducing platform cost. 
    more » « less
  5. System auditing is a powerful tool that provides insight into the nature of suspicious events in computing systems, allowing machine operators to detect and subsequently investigate security incidents. While auditing has proven invaluable to the security of traditional computers, existing audit frameworks are rarely designed with consideration for Real-Time Systems (RTS). The transparency provided by system auditing would be of tremendous benefit in a variety of security-critical RTS domains, (e.g., autonomous vehicles); however, if audit mechanisms are not carefully integrated into RTS, auditing can be rendered ineffectual and violate the real-world temporal requirements of the RTS. In this paper, we demonstrate how to adapt commodity audit frameworks to RTS. Using Linux Audit as a case study, we first demonstrate that the volume of audit events generated by commodity frameworks is unsustainable within the temporal and resource constraints of real-time (RT) applications. To address this, we present Ellipsis, a set of kernel-based reduction techniques that leverage the periodic repetitive nature of RT applications to aggressively reduce the costs of system-level auditing. Ellipsis generates succinct descriptions of RT applications’ expected activity while retaining a detailed record of unexpected activities, enabling analysis of suspicious activity while meeting temporal constraints. Our evaluation of Ellipsis, using ArduPilot (an open-source autopilot application suite) demonstrates up to 93% reduction in audit log generation. 
    more » « less
  6. Timing correctness is crucial in a multi-criticality real-time system, such as an autonomous driving system. It has been recently shown that these systems can be vulnerable to timing inference attacks, mainly due to their predictable behavioral patterns. Existing solutions like schedule randomization cannot protect against such attacks, often limited by the system’s real-time nature. This article presents “ SchedGuard++ ”: a temporal protection framework for Linux-based real-time systems that protects against posterior schedule-based attacks by preventing untrusted tasks from executing during specific time intervals. SchedGuard++ supports multi-core platforms and is implemented using Linux containers and a customized Linux kernel real-time scheduler. We provide schedulability analysis assuming the Logical Execution Time (LET) paradigm, which enforces I/O predictability. The proposed response time analysis takes into account the interference from trusted and untrusted tasks and the impact of the protection mechanism. We demonstrate the effectiveness of our system using a realistic radio-controlled rover platform. Not only is “ SchedGuard++ ” able to protect against the posterior schedule-based attacks, but it also ensures that the real-time tasks/containers meet their temporal requirements. 
    more » « less
  7. Abstract Advances in deep learning have revolutionized cyber‐physical applications, including the development of autonomous vehicles. However, real‐world collisions involving autonomous control of vehicles have raised significant safety concerns regarding the use of deep neural networks (DNNs) in safety‐critical tasks, particularly perception. The inherent unverifiability of DNNs poses a key challenge in ensuring their safe and reliable operation. In this work, we propose perception simplex ( ), a fault‐tolerant application architecture designed for obstacle detection and collision avoidance. We analyse an existing LiDAR‐based classical obstacle detection algorithm to establish strict bounds on its capabilities and limitations. Such analysis and verification have not been possible for deep learning‐based perception systems yet. By employing verifiable obstacle detection algorithms, identifies obstacle existence detection faults in the output of unverifiable DNN‐based object detectors. When faults with potential collision risks are detected, appropriate corrective actions are initiated. Through extensive analysis and software‐in‐the‐loop simulations, we demonstrate that provides deterministic fault tolerance against obstacle existence detection faults, establishing a robust safety guarantee. 
    more » « less
  8. Perception of obstacles remains a critical safety concern for autonomous vehicles. Real-world collisions have shown that the autonomy faults leading to fatal collisions originate from obstacle existence detection. Open source autonomous driving implementations show a perception pipeline with complex interdependent Deep Neural Networks. These networks are not fully verifiable, making them unsuitable for safety-critical tasks. In this work, we present a safety verification of an existing LiDAR based classical obstacle detection algorithm. We establish strict bounds on the capabilities of this obstacle detection algorithm. Given safety standards, such bounds allow for determining LiDAR sensor properties that would reliably satisfy the standards. Such analysis has as yet been unattainable for neural network based perception systems. We provide a rigorous analysis of the obstacle detection s 
    more » « less